

The present invention relates to improvements in track lajine motor vehicle construction.

An obfect of the invention is the provision of a track laying vehicle of generally improved design.
inother object of the invention is the provision of a track layine vehicle havine a hichly flexible track eneaging support structure which readily conforms to inqualities of the ground.

A further object of the invention is the provision of a traci laying vehicle having support means of the aforesaid character which is very strong and durable.

Still another object of the invention is the provision of a track laying vehicie of the above character which is highly efficient in operation.

Other objects and advantages of the invention will become apparent as the description prosresses.

In the accompanying drawing formine a part of this specification and in which like reference characters are employed to desisnate corresponding parts throughout the same:-

Figure 1 is a sice elevational view of the vehicle,
Figure 2 is a side elevational viem of the rear portion of the vehicle in one position,

Fisure 3 is a similar view showing the mechanism in another position,

Figure 4 is a plan view of the lower rear portion of the vehicle,

Figure 5 is a longitudinal section tsken on the line 5-5 of Figure 4,

Finure δ is a transverse section taken on the line 6-6 of Figure 4,

Figure 7 is a secion taken on ine 1ire 7-7 of Fieure 5,

Fieure 8 is a framentary detail elevational view of the track belt, and

Fieure 9 is a framentary sectional vew through the belt.

Referring to the drawings, wherein for the purpose of illustration is shown a preferred embodiment of the inrention, 10 eenerally desienates the vehicle. which is of the type ordinarily constructed for wheeled vehicles embodying a chassis frame 11, a cabin 12 and a motor enclosine hood 13.

On the conventional front spindles 15 are mounted runners 16 , of any preferred well-innown character, adapted Sor operation upon snom or zce covered eround. At the rear of the chassis is provided a conventional rear axle transmission mechanism 17 driven by a propeller shaft 18.

The rear spring suspension embodies a pair of lonsitudinally directed semi-elliptic sprine members 20 seoured to the frame 11 in a position formardly of the rear axle. The conventional rear driving wheels are removed fron the driving axle and are replaced by a pair of special Wheels 21 having a hub, spoke and brake structure corresponding to the corventional wheels and provided with a relatively wide annular felly 22 formed to provide on the circumferential centre portion a plurality of sockets 23. The side flanges of the felly may likewise be apertured, as indicated at 24 , to allow the snow to clear off.

At a position spaced formardly of each of the two drive wheels 21 is provided a similar wheel 26 fitted on the end portion of a transversely extendine shaft 27. Over the complementary wheels 21 and 26. at each side of the rear portion of the vehicle, is trained an endless track belt 28 , in the form of a relatively wide continuous flexible band, of rubber or the like, In the outer face of each of these endess tre : k members is formed a longitudinal centrally arrange .el 29, while the surface of the raised portion at each side is preferably provided with zie-zae Erooves 30 to furnish a suitable tread. To the inner side or Iace of each belt 28, iirectly opposite the channel 29, are secured a plurality of tooth forming blocks 31, of eloncated tapering form. These blocks are securely fastened to the track belt at predetermined spaced intervals by bolts 32 and are adapted to engage the sockets in the wheels 21 and 26.

To a bracket 34 secured to the bottom central part of each spring 20 is connected a support lever 35 curved so that its ends 36 are directed downwardly while the main intermediate body portion is bowed downwardly, as shown to advantage at Figure 5. A pivot knuckie 37 formed at the centre of the lonsitudinally extending lever bar 35 is connected by a pin 39 with an eye on the bracket 34 to provide an oscillatory connection.

The rear end of each oscillatory bar 35, which is prefersbly formed with a pivot znucile, spans and pivotally connects with the intermediate portion of an arm 42. This arm is in the form of a straight tapered bar havire the heavier inner end provided rith a bearing 43 rotatebly encacing a transverse shaft 44. The opposite outer end portion of this arm is fastened on the housing of the rear drive shaft by a clamp 45 .

The formard end of each bar $3 E$ is pivotally connected with a front arm 47 , similar to the rear arms 42 , havine its inner end connected with a shaft 48 by a bearine and its outer end secured on a clamp 49 on the front wheel shaft 27. This clamp 49 is adapted to slidably engage the forward end of the bar which is adjustable thereon by a scres 50 to snable the tension of the track belt to bs refulated.

On the outer end portions of the shafts 44 and 48 are counted arcuate frame members 52 having thei. medial portions pivotally connected with the shafts and formed of strong bar material. The downwardy directed end portions of these arcuate frame members are connected, throdeh the medium of pivot connections 53 , to truck sections or bosies 54. Each of these sections is formed at the ends with bearing sleeves engaging the intermediate parts of transversely $3 x t e n d i n g$ roller shafts 55. On the apposite portions of the shafts 55 are rotatably iftted rollers 56 arranged in transversely spaced pairs and disposed to rest and roll on the inner face of the track 28 at each side of the teeth 31.

Formed inteeral with and projecting laterally outward of each knuckle 37 is a bracket leg 58 having a right ancular upstanding lee 60 at its outer end. The leg 60 is apertured to receive a transversely disposed shaft 61 having a pair of rollers 62 rotatably fitted thereon. These rollers are arranged to engage and aupport the upper reach of the track and to obviate whipping thereof when the vehicle is in motion.

This construction provides a highly ilexible support and drive mechanism. The rear pair of wheels 21 secured on the axle shaft driven by the vehicle motor, which drive the two endless treck belts 28 , the forward complementary idier wheels 26 over which the tracks are trained, and the intermeciate rollers 56 are so arranged and connected as to furnish efficient traction. The supporting and connectine levers and trucks are adapted to maintain the intermediate rollers in effective contact With the tracks as the ereat flexibility thereof is desiened to enable these rollers to conform to road inequalities, as shown to advantsoe at Fifures 1 to 3 inclusive. Thus, the rolling support is effectively distributed between the roller trucks and the comparatively larce wheels by the arms 42 and 47 to which are connected the ends of the main support bars 35 .

It is to be understood that the form of my invention herein shown and described is to be taken as a preferred example of the same, and that various changez as to the shape, size and arrangement of parts may be resorted to without departing from the spirit of the invention or the scope of the subjoined clatis.

Having thus described my invention, I clair:-

1. In a motor vehicle having a frame and a motor driven shait, a pair of drive wheels secured on the said shaft, an auxiliary shaft having a pair of 1dler wheels mounted thereon, an endless track trained over each drive wheel and complementary ider wheel, a plurality of roller trucks mounted on each track between the wheels, means for pivotally coupling together each adjacent pair of trucks, a plurality of levers connecting the wheel shafts with the roller truck coupling means, a spring attached to the frame at each side, a support and tying lever pivoted centrally to the spring and pivoted at each end to one wheel shait lerer to ensure the proper positioning of levers and trucks, and means for adjusting the length of said wheel shaft levers.
2. In a motor vehicle having a irame and a motor driven shatt at the rear of the erarie, a pair of drive wheels secured on the sald shaft, an auxiliary shaft arranged forward of and parallel with the motor driven shaft, a pair of idler wheels on the said auxiliary shaft, an endless track trained over each drive wheel and a complementary idler wheel and driven by the said drive wheel, a plurality of roller trucks disposed on the lower reach of each track, a irame member connecting the said trucks In pairs, a plurality of levers connecting the wheel shafts with adjacent pairs of roller trucks, a spring attached to the vehicle frame at each side, and a support rember pivotally connected with each spring and with the said lovers.
```
                                    In a motor vohiole having a Srane end a =0:0% driven shatt at the rean of the frame, a pair of drive wheels secured on the said shazt, an aurillary shaft sraned formard of and parallel with the motor delven shait, a zeir o: idiar wheels on the saic auxiliary shaft, an endless track trafned orer each drive wheel and a conplementary ldier wheel and driven by the saic drive wheol, a plurality of roller trucis ilsposed on the lower reach of each track, a Erame member connecting the said trucks in peirs, a piurailty of ievers connectine the wheel shaits with adjacent pairs of rollex trucks, a spring attached to the vehicle treae at each side, and an oscillatory lever harime its centre portion pirotailu connected with each sprin ond tio end jontions こ1votaizu comected with interagdiate parts \(0:\) the levers.
```


Sosepple di viructras

